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The weighted-essentially non-oscillatory (WENO) schemes have been used to calculate 
the shock-embedded compressible fluid flow ([9]). The potential high-fidelity qualities of this 
approach make it attractive for jet noise simulation. However, in its present form, the 
WENO procedure has many drawbacks that prevent direct applications to jet noise 
simulations. In this paper, various WENO procedures are evaluated in generalized 
curvilinear coordinate systems. In addition, freestream preservation and boundary 
treatment are discussed. It has been verified in this paper that the original WENO 
procedure drafted by Jiang and Shu ([9]) is too dissipative for shock/entropy wave 
interactions. It has also been found that the ghost-point boundary treatment suggested in [9] 
does not perform well for shock-boundary interaction problems and more general problems 
with solid walls. Furthermore, it is demonstrated that the modifications suggested by Martin 
et al. ([11], [12]) are susceptible to numerical oscillations in non-homogeneous compressible 
flows. A modified WENO scheme that is more robust and less dissipative is proposed and 
tested in this paper.     

I. Introduction 
omputational aeroacoustics (CAA) has made significant progress over the last decades, and offers new 
perspectives on jet noise understanding and predictions, as pointed out by Tam in 1998 ([1]). As the focus of 

current CAA computations of jet noise is on the development of high-fidelity large-eddy simulations (LES), various 
higher-order accurate and optimized numerical schemes are sought in order to reduce the required number of grid 
points per wavelength with low dissipation and low dispersion properties. The dispersion-relation-preserving (DRP) 
scheme has been used in the jet-noise predictions by Bogey and Bailly ([2]-[4]). The high-order compact scheme has 
been used in the work of Bodony and Lele ([5]), and Lyrintzis and co-workers ([6]). It has been noted that the 
above-mentioned high-order schemes are suitable only for subsonic jet flows. For supersonic jet flow with shock-
associated noises, very few work, except those of Shur et al ([7], [8]) that have been attempted with high-order 
numerical schemes. 

C 

 
In the work of Shur et al. ([7], [8]), a high-order hybrid scheme (weighted 5th-order upwind and 4th-order centered 
MUSCL scheme) are used. As the weighted-essentially non-oscillatory (WENO) methods are developed to tackle 
the shock-embedded compressible fluid flow ([9]), the WENO scheme shows a potential in simulating supersonic jet 
noises ([10]). However, it has been noticed that the original WENO scheme developed in ([9]) is too dissipative, and 
it can be improved by the procedure developed in Martin et al ([10], [11]) for homogeneous flows. As the 
improvement by Martin et al. is based on the numerical analysis with uniform grids and ignores the issues related to 
the WENO treatment of boundary conditions, the current study provides a further evaluation of the performance of 
Martin’s scheme in more complex flows with general curvilinear systems. Some issues arising from the WENO 
treatment of boundary conditions are also addressed in this paper.  
 
The WENO scheme developed in the current work is based on a finite difference procedure for the convective flux 
terms as proposed by Jiang and Shu ([9]). One of the principal problems encountered in the solution of the Navier–
Stokes equations with high-order finite-difference schemes in general curvilinear coordinates is the occurrence of 
numerical instabilities which are very sensitive to the nonlinear interactions from boundary condition 
implementation, mesh non-uniformities, unresolved flow scales, and the nonlinearity of the governing equations. 
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The mesh non-uniformities cause an issue of freestream preservation and metric cancellations. These errors, which 
arise in finite-difference discretizations of the governing equations written in strong-conservation form, can 
catastrophically degrade the fidelity of higher-order approaches, which have been addressed carefully for high-order 
compact schemes by Visbal and Gaitonde ([13]). However, for the WENO scheme, since the metrics need to be 
evaluated in an adaptive, weighted mode as the flux terms were, the exact metric cancellation is difficult to achieve. 
Thus the overall WENO performance turns out being dependent somewhat on the mesh qualities (Cai et al. (2000)). 
A numerical procedure has been developed in this paper to handle this issue. Meanwhile, it is worthy to note that an 
alternative WENO implementation based on the Roe approximate Riemann solver has also appeared in the literature 
(for example, Gross and Fasel, 2002; Shen, Wang and Zha, 2007). In this approach, the WENO procedure is used to 
reconstruct the primitive/conservative variables at the cell faces, and plays a role as the limiter. Therefore, the 
procedure for the metrics calculations for the conventional Roe schemes can then be extended straightforward to the 
WENO calculations, and the issues of freestream preservations and metric cancellations can be treated as usual. The 
performance of this WENO procedure in general curvilinear coordinate systems is currently under investigation in 
our organization, and will be reported in our future reports.  
 
The paper is organized as follows. In Section II, the basic WENO form in a general curvilinear coordinate system is 
given. The issues on the freestream preservation and boundary treatments are then discussed in Sections III and IV. 
Section V presents the numerical experiments of various WENO schemes on a series of test cases with different 
complexities from solid-wall boundaries and non-uniform mesh systems. A summary of our observations has been 
drawn in Section VI.     

II. WENO Procedure in a Curvilinear Coordinate System 
Our WENO scheme is implemented for a flow in a curvilinear coordinate system, which is in the form 
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where Q is the vector of conserved variables, ( )TEwvuQ ρρρρρ ,,,,= , ( F̂ , ,Ĝ Ĥ ) are the convective fluxes,  ( , , ) 
are the viscous fluxes, J is the Jacobian of the transformation between the generalized coordinate system (ξ,η,ζ), and 
physical coordinate system (x, y ,z). The WENO scheme is used to approximate the convective flux terms with Roe-
type characteristic decomposition, i.e.,  
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where RoeR~  is the matrix formed with the right eigenvectors of the Jacobian Q
F
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averaged state at i±½. For the characteristic WENO, the reconstruction procedure is performed on the characteristic 
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where are the WENO reconstructed values of  from the left- and right-sides, respectively.  k 
indicates the number of candidate stencils, which is fixed to 3 in the current study. 

±
+ 2/1,

ˆ
icF 2/1,

ˆ
+icF

rω  are the normalized forms of 
weights, , which are based on smoothness indicators, ISrΩ r, of the numerical fluxes, 
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in which ε prevents division by zero, and p may be varied to increase or decrease WENO adaptation sensitivity. 
Both parameters are found to affect the WENO dissipations, where the smaller value of ε or the larger value of p 
induces the more dissipation of the WENO schemes.  ε=10-6 and p=2 are suggested in the work of Jiang and Shu 
([9]), while ε=10-10 and p=1 are adopted in Martin et al. ([10], [11]). ISr is a smoothness measurement that becomes 
large when discontinuities are present within stencil r. In Martin et al. ([10], [11]), the concept of limiters is 
proposed to gauge the value of ISr so that often adaptations of the WENO stencils are restricted. The weighing 
constants, Cr for both WENO schemes are listed in Table 1 for k=3, where the scheme by Jiang and Shu is noted as 
WENO-JS, and the scheme by Martin et al. as WENO-PM. WENO-PM (SYMOO) and WENO-PM (SYMBO) are 
two variants of WENO-PM. When there is no explicit identification, WENO-PM is always referred to WENO-PM 
(SYMBO) with the total variation relative limiters (RLTV). crm represents the coefficients of Lagrange interpolation, 
which are the same for both WENO-JS and WENO-PM and are listed in Table 2.  It is also noted that the number of 
candidate stencils are different in the two schemes, in which a symmetric WENO stencil (k=4) are proposed in the 
work of Martin et al. The determination of the smoothness indicators (ISr) from various WENO schemes is 
described as follows: 
 

• Smoothness Indicator 
 

The basic formula for the smoothness indicator is 
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where the coefficients are listed in Table 3. 
 
WENO-JS regulates ISr by using the limiter 
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where αAL is a case-dependent, empirical constant. In our calculations, αAL is set to zero as in Jiang and Shu (1996). 
 
WENO-PM (RL) uses the limiter 
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WENO-PM (RLTV) is using the limiter 
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r WENO-JS WENO-PM (SYMOO) WENO-PM (SYMBO) 
0 1/10 1/20 0.094647545896 
1 6/10 9/20 0.428074212384 
2 3/10 9/20 0.408289331408 
3 N/A 1/20 0.068988910311 

Table 1: Optimal weights Cr with k=3 
 

 
crm m=0 m=1 m=2 
r=0 2/6 -7/6 11/6 
r=1 -1/6 5/6 2/6 
r=2 2/6 5/6 -1/6 

r=3 (WENO-PM only)  11/6 -7/6 2/6 
Table 2: Candidate flux stencil coefficients crm for both WENO-JS and WENO-PM 

 
drml l=0 l=1 l=2 

r=0 1/2 -4/2 3/2 
r=1 -1/2 0 1/2 
r=2 -3/2 4/2 -1/2 

m=1 

r=3 -5/2 8/2 -3/2 
r=0 β2 -2 β2 β2
r=1 β2 -2 β2 β2
r=2 β2 -2 β2 β2

m=2 

r=3 β2 -2 β2 β2
Table 3: Smoothness measurement stencil coefficients drml for both WENO-JS and WENO-PM. Note r=3 is relevant only for WENO-PM.  

 

III. Freestream Preservation and Metric Cancellation 
Freestream preservation and metric cancellation issues arise when high-order numerical schemes are used to 
discretize Eq. (1). Thus the metric identities (Iξ,Iη, and Iζ), for example, 
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must be satisfied by various numerical discretizations. 
  
A direct evaluation of the metrics,  
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is working well for high-order numerical schemes as pointed out by Visbal and Gaitonde ([13]). For the compact 
scheme described in that paper, Visbal and Gaitonde have designed a conserving procedure to evaluate the metrics,   
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These metric forms are adopted in our WENO implementations. Furthermore, considering that the WENO scheme is 
an upwind-weighted scheme, the metric evaluation of any first-derivative appearing in Eq. (10b) is treated by an 
averaging procedure as follows, taking xξ as an example: 
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where  and  are evaluated by a WENO procedure as above, respectively, interpolated from the left and 
right hand sides. Our experience shows, use of Eq. (11) reduces the numerical errors in evaluating Eq. (9) by two 
orders of magnitude. Table 4 gives the numerical errors from various numerical schemes in evaluating the metrics 
and the identity using Eq. (9) for a typical 2D curvilinear mesh of airfoil. 

+
+ 2/1ix −
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Scheme ε(ξx) ε(ηx) ε(ηy) ε(Iξ) 
2nd-Central Difference 1.58×10-5 2.22×10-2 5.11×10-5 4.62×10-18

6th-Compact 2.76×10-8 6.08×10-4 1.35×10-8 3.93×10-17

5th-WENO 3.63×10-6 8.44×10-3 2.65×10-6 2.39×10-7

Table 4: Numerical Errors from various schemes in evaluating metric identity Iξ  
 
To further reduce the numerical effects of the metrics evaluation errors, the full form of Navier-Stokes equation in 
the curvilinear coordinate systems,  
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is used in place of Eq. (1).  
 

IV. Boundary Treatment 
It is noted that in Shu (1997), ghost points with artificially-set large values are used to evaluate the flux terms at the 
boundaries This procedure, which is equivalent in force to the use of a one-sided stencil, induces significant 
numerical errors as demonstrated later in this work. Our remedy is to design a lower order (second-order) fixed 
stencil to approximate the flux terms  and  near the boundaries, and lower WENO schemes for the next 
near-boundary points. Specifically, under this new treatment, the equations in Eq. (3) are reformulated below. 
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a) WENO Evaluation of Flux Terms at Boundaries 
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For the second close-boundary cell-face points, a WENO procedure with k=2 are used. The schemes with these 
modifications are called MWENO. It is noted that ε=10-10 and p=1 are adopted for MWENO in our calculations, as 
the modified schemes by Martin et al.   
  
A WENO-consistent one-sided interpolation procedure has also been derived for the boundary conditions with the 
gradients specified. The formulas are described below. 
  
b) WENO Interpolation of dφ/dn at Boundaries 

 
It is known from the WENO procedure reported by Shu in 1997 that the interpolation function and its derivative 
from the cell-averaged values of ϕ , are 
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Therefore, we have at the cell-center point, 
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For k=3, r=-1, and a uniform grid, we have 
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Equations (16a) and (16b) can be used to approximate the boundary values as the gradient at the boundary is known. 
For example, with dφ/dn = 0, we can extrapolate from the interior points, the boundary values as 
 

 
21 36
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V. Numerical Results 
 

a) Free Stream on a Curvilinear Mesh 
A uniform free-stream flow with a Mach number of 1 is imposed on a curvilinear mesh as used in Visbal and 
Gaitonde ([19]). The mesh is uniform in the x-direction, but is stretched in the y-direction as specified by 
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The grid quality is dependent on the choice of the parameter of A, R, and Φ. In our test, ∆x = 0.1, R = 16,  
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A is determined by a way so that the stretched mesh is located away from the boundary (as shown in Figure 1a). 
If the metrics cancellation is not carefully treated, significant numerical oscillation occurs as seen in Figure 1b. 
After Eqs (11) and (12) have been used, no visible pressure oscillations have been observed.
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Figure 1a: Curvilinear mesh with stretched grid away 

from the boundary. 
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Figure 1b: Pressure contour distributions for a uniform free-
stream flow calculated with WENO scheme without exact 
metrics cancellations. 

b) 1D Shock-Wave Interaction 
This test problem includes the propagation of a moving shock interacting with a density fluctuation. The 
parameters chosen in the current study are exactly consistent with those in Taylor et al. ([11]), which provide a 
validation case for the implementation of WENO-PM scheme. The initial condition is specified as 
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The domain size is [0.0, 1.0] with 192 grid points distributed uniformly as the same as in [11].  

 
American Institute of Aeronautics and Astronautics 

 

7



 
Figures 2a and 2b present the density profiles from various WENO schemes, compared to exact solutions and 
MUSCL-Roe scheme. It is shown that the original WENO-JS is indeed very dissipative and only slightly better 
than the MUSCL-Roe scheme. On the other hand, the MWENO scheme with ε=10-10 and p=1 improves the 
results significantly, and the WENO-PM scheme compares excellent with the exact solution as well as those in 
[11].    
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Figure 2a: Density profiles from various WENO schemes. 
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Figure 2b: Comparison of schemes in fluctuation regions. 
Note that WENO-PM (RLTV) is shown here and 

MUSCL-Roe is not shown here. 
 
c) Inviscid Oblique Shock Interaction 
This is a two-dimensional test case. The freestream Mach number and flow deflection angle are M∞=3.0 and 
δ=15˚, respectively, as used in Visbal and Gaitonde ([12]). The mesh size is 151×51 and is uniformly 
distributed in both directions.  
 
Figure 3 presents the pressure distributions along the line y=0.1. The results show that the original WENO-JS 
with large-valued ghost points induces significant oscillations and wrong reflective shock-wave positions. 
Meanwhile, when symmetric boundary conditions are used, the WENO-JS produces a profile in much better 
agreement with the exact solution, which demonstrates that the boundary treatments indeed affect the 
performance of the WENO scheme. Considering the complexity in implementing the symmetric boundary 
conditions for general geometric-complex cases, it is our choice to use the MWENO-JS scheme with first-order 
extrapolation and MWENO-JS2 with second-order WENO-consistent extrapolation in Eq. (20). Figure 3a 
shows that both WENO-JS and WENO-JS2 perform well.  Furthermore, Figure 3b shows that the MWENO-JS 
performs much better that MUSCL-Roe scheme while the WENO-PM scheme induces significant oscillations. 
Figure 4(a) presents the pressure contours from MWENO-JS which is oscillation-free, compared with the 
oscillatory results from WENO-PM in Figure 4(b). The uniform-distributed meshes are also shown in Figure 
4(a). 
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Figure 3a: Pressure distributions along y=0.1 for Mach 3 inviscid shock reflection with different boundary schemes. 
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Figure 3b: Pressure distributions along y=0.1 for Mach 3 inviscid shock reflection with different schemes. 
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Figure 3c: A close-up view of pressure distributions along y=0.1. 
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Figure 4: Pressure contours: (a) MWENO-JS; (b) WENO-PM. 
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d) 2D Shock/Laminar Boundary Layer Interaction 
In this example, a complex separated flow is generated from the impingement of an oblique shock on a laminar 
boundary layer along a flat plate (see Visbal (2005)). The freestream Mach number is of 2.0 with 6˚ shock 
deflection angle. The Reynolds number is 3.0×105. The boundary setup and mesh used are the same as in Visbal 
(2005). That is, at the inflow boundary, fixed-flow boundary conditions obtained from a separate flat-plate 
computation are specified. Along the wall, no-slip adiabatic conditions are prescribed. At the top and outflow 
boundaries, first order extrapolation condition of all flow variables is used.   
 
Figures 5 and 6 show the computational results with the grid size (286×131), the coarsest grid used in Visbal 
(2005). Compared with MUSCL-Roe scheme (Figure 5b), the MWENO-JS scheme (Figure 5a) produces a 
better compression/expansion waves above the separation zones. The surface pressure distributions shown in 
Figure 6a demonstrate that the MWENO-JS scheme produces much better results than the MUSCL-Roe scheme 
both upstream and downstream of the separation point, but does not improve the prediction on the location of 
the separation point. Meanwhile, the WENO-PM scheme produces an oscillatory surface pressure distribution. 
Figure 5c presents the pressure contours for WENO-PM. For comparison, Figure 5d show the results from a 
fine mesh (476×265). Figure 6b shows the results from MWENO-JS scheme converged to Visbal’s fine-mesh 
results when the mesh is refined. The slight difference between the fine-mesh results could come from the fact 
that our simulation may not be fully converged.   
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Figure 6: Surface pressure for Mach 2 shock/laminar boundary-layer interaction: 
a) MWENO compared with WENO-PM; b) Fine mesh versus coarse mesh. 
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In this example, a transonic flow around a NACA0012 airfoil has been simulated with O-grids (the mesh size is 
193×40, as shown in Figure 7a).  The computational domain size is 25, the Mach number is 0.8, and the angle 
of attach is 1.25. This is an inviscid calculation with slippery-wall boundary condition used at the airfoil 
surface. At the far field, the following Dirichlet boundary conditions are used without the vortex correction 
introduced by Thomas and Salas ([16]),  
 

∞∞∞∞ ==== ρραα ,),sin(),cos( PpUvUu . 
  
The typical pressure contours from the MWENO-JS are shown in Figure 7b. Figure 8 compares the 
convergence rate of the lift coefficients from various schemes, which show that the MWENO-JS has a slower 
convergence rate than the MUSCL-Roe scheme, but with a better convergence value than the MUSCL-Roe 
scheme. The original WENO-JS scheme can only obtain a quasi-steady solution. It is also noted that Jameson’s 
result was obtained from a finer mesh with the mesh size of 320×64.  Figure 9 compares the pressure 
coefficients around the top and bottom surfaces of the airfoil, which show that the results from the MWENO-JS 
scheme agree the best with Jameson’s results.     
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Figure 7: Transonic NACA0012 calculation: a) O-M
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esh; b) Pressure contours from MWENO-JS. 
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Figure 9: The surface pressure coefficients around the top and bottom surfaces of NACA0012 airfoil. M=0.8, α=1.25o. 

 
f) High Subsonic Jet Flow 
In this test, a high subsonic jet flows (Mj=0.9), the set point 7 of Tanna ([20]) is used to evaluate the 
performance of the modified WENO scheme. In a series of prior work by the authors (for example, Cai et al. 
([21])), we have developed a hybrid LES/RANS numerical procedure, which successfully predicted the near-
field SPL signatures and the far-field sound directivity pattern for a set of high subsonic jet flows.  However, we 
also found that our hybrid LES/RANS procedure based on the MUSCL-Roe scheme has systematically over-
predicted the near-field and far-field sound level by 5-10 dB, which is fortuitously consistent with many other 
works in the literature but need further investigations. It thus motivates us to apply the WENO scheme modified 
here for this case. 
 

A multi-block mesh system with about two million grid points has been used in our calculations. The details about 
the mesh distributions, the far-field boundary treatment and the nozzle inflow conditions can be found in Cai et al. 
([21]). The effects of the numerical schemes have been shown in Figure 10 through Figure 12. Figure 10 shows the 
averaged axial velocity at the jet centerline for three numerical schemes (MUSCL-Roe, WENO, and compact 
scheme). The results from the compact scheme are obtained from Bodony and Lele ([5]). It can be seen from Figure 
10 that the numerical prediction from the WENO scheme compares well with the compact scheme, both of which 
are slightly better than that from the MUSCL-Roe scheme. The near-field pressure spectra at two locations 
(x/D=0.375, r/D=0.875; x/D=4.125, r/D=1.625) are shown in Figure 11. For the near-nozzle locations (for example, 
x/D=0.375), the numerical results with the WENO scheme appear to capture the distinctive tones occurred in the 
experimental data, which is not observed with MUSCL scheme. For down-stream locations (x/D=4.125), the LES 
with WENO scheme lowered the peak pressure level by about 10 dB than that with MUSCL scheme, which are 
closer to the experimental measurements. The numerical prediction on the far-field OASPL is shown in Figure 12, 
which is obtained from the near-field LES results by the Ffowcs-Williams/Hawkings (FW-H) integration method.  
The details about the validation and accuracy of our FW-H method can be found in Cai et al. ([21]). Figure 12 
presents the sound directivities predicted by the WENO and MUSCL schemes (r/D=100), and also shows the effects 
by the locations of the FW-H integration surfaces (Wi denotes various span-wise widths and Li for downstream 
locations, which is defined in Cai et al. ([21]).  Once again, it confirms that the WENO scheme as well as the 
compact scheme performs better than the MUSCL scheme. 
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Figure 10: Centerline Mean Streamwise Velocity Profile. 
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Figure 11: The near-field pressure spectra at two downstream 
locations predicted by the WENO and MUSCL Schemes. 

 
Figure 12: The OASPL predicted from the FW-H calculations as a function of the directivity angle. 

VI. Summary and Future Work 
In this paper, the original WENO procedure by Shu ([9]) has been modified to applications in generalized 

curvilinear coordinate systems. The issues on freestream preservation and boundary treatment have been discussed. 
The performance of the modified WENO procedure has been examined and evaluated throughout a few applications 
in some typical aerodynamic flows including shock-boundary interactions and transonic flows around airfoils. It has 
been shown that the numerical accuracy and stability of the modified WENO procedure has been improved in 
comparison to that of the original WENO procedure by Shu ([9]). It has also been found that the modification made 
by Martin et al. ([11], [12]) in homogeneous turbulent flows is susceptible to numerical oscillations in general non-
homogeneous cases. Preliminary application of this modified WENO scheme to high subsonic jet noise prediction 
has produced a very encouraging improvement over the low-order MUSCL Roe scheme. More studies and 
evaluations are needed before this modified WENO procedure could be fully applied to more complex aeroacoustic 
calculations. For example, the dispersion-preserving properties have to be evaluated as the modified WENO 
procedure adopts a fixed lower-order central scheme near the boundary points.    
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